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Spontaneous regular structure amplification in strongly turbulent rotating fluids
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An initial stage of spontaneous generation of regular structures in strongly turbulent rotating fluids is studied
in the framework of the Charney-Hasegawa-Mima model [J. Pedlosky, Geophysical Fluid Dynamics (Springer,
New York, 1979); A. Hasegawa and K. Mima, Phys. Fluids 21, 87 (1978)]. It is shown that small-scale
turbulence may maintain a regular structure in a mean flow. The corresponding growth rate is shown to have
a form of negative hyperviscosity. Possible applications in the theoretical study of large scale vortices in the

Jovian atmospheres are discussed.

PACS number(s): 47.32.Cc, 47.27.Gs, 42.68.Bz, 05.45.+b

This paper is devoted to the problem of the formation and
sustainment of large-scale ordered Rossby-type structures in
strongly turbulent rotating fluids modeling planetary atmo-
spheres. During the last 20 years many theoretical papers
were devoted to this problem. A lot of them [1-11] started
from the Charney-Hasegawa-Mima (CHM) equation [2,4]
that describes both linear and strongly nonlinear vortexlike
Rossby waves in a rotating fluid as well as low-frequency
drift waves in a magnetized plasma. It was shown that
Rossby vortices might have both dipole [5] and monopole
[6] structures. Besides analytical research numerous labora-
tory [7—-10] and numerical [11,12] simulations have been
carried out. Rossby vortices were shown to be the best model
solutions describing strongly nonlinear large-scale objects in
atmospheres of planets. But the process of a transformation
of well-known linear Rossby waves into the strongly nonlin-
ear vortices still has to be studied. One possibility is a spon-
taneous generation of large-scale mean flows by turbulent
Reynolds stresses, as utilized in the so-called vortex-dynamo
model [13-16]. The idea is that the small-scale turbulence
may be considered as consisting of a number of high-
frequency quanta moving on the background of a mean flow
formed by the large-scale motions and acting on the large
scales by some pondermotive force. An analogous problem
has been studied in paper [17] considering the interaction of
regular vortex structures with small-scale weak drift-wave
turbulence in magnetized plasmas. It was shown that a so-
called “‘self-organization instability” describing the flow of
the energy of turbulent pulsations to the regular vortices
could occur. Spontaneous mean shear flow amplification in
weakly turbulent plasmas (in the framework of the model
incorporating the adiabatic electron response) was also
shown to be possible in paper [18]. The interaction of large-
scale regular Rossby structures (that were assumed to be al-
ready shaped) with weak Rossby turbulence and the influ-
ence of the vortices’ existence on two-dimensional (2D)
turbulence spectra were studied in papers [19,20].
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The present paper considers the interaction of large-scale
regular Rossby waves with small-scale Rossby-wave turbu-
lence that, unlike in papers [17-20], is supposed to be strong
(the characteristic time of turbulent spectra formation is as-
sumed to be much smaller than the time of a regular structure
growth). The interaction is studied with the aid of the direct
interaction approximation (DIA). The modified CHM equa-
tion, taking into account the influence of small-scale turbu-
lence on regular structure dynamics, is obtained. An instabil-
ity that explains the large-scale Rossby mode growth due to
an interaction with turbulence is shown to be possible. The
characteristic size of a vortex is estimated.

It is well known that the dynamics of both linear and
nonlinear Rossby waves in a rotating atmosphere may be
properly described by a vorticity transport equation (known
as the CHM equation) written in the quasigeostrophic
B-plane approximation [1,2]:
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where g is the gradient of the Coriolis force, ® = CID()Zi ,1) is
the stream function of the two-dimensional flow (that is sup-
posed to be a superposition of turbulent pulsations and a
regular mean flow), x,=(x,y,0), V,K =(3/dx,d/dy,0),
rR= \/g-H/f is the Rossby radius, and H, g, f, and v, are the
mean vertical depth, gravitational acceleration, twice the an-
gular velocity, and a molecular viscosity, respectively. In this
paper we are most interested in structures of the ensemble-
mean flow. For this purpose, following paper [17] we sepa-
rate a stream function @ into the large-scale ensemble-mean
part (@) (the appearance of which may be, for example, due
to the existence of an inverse energy cascade in 2D turbu-
lence [21]) and the small-scale turbulent part ®7 as
O(x, ,1)=(P(x, ,0))+DT(x, ,r), where the bracket ()
means averaging over the fast time of small-scale fluctua-
tions (note that (®) depends on time through a sequence of
ensemble averages made while keeping time fixed). Substi-
tuting this expression into Eq. (1) and averaging it in the
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usual manner we obtain the following system of equations
for the mean flow and the turbulent field, respectively:
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where [a,b] means the Jacobian
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In the presence of a regular structure, the total turbulent
field @7 may be represented in the form

OT=pTO+ T, Q)

where ®7( is the turbulent field in the absence of a mean
flow and @7V is a turbulence perturbation due to the exist-
ence of a mean flow. The latter is supposed to be small,
namely |®7TW]|<|pT®] (a more precise condition will be
obtained below). Substituting Eq. (5) into Eq. (3) and re-
stricting ourselves to terms linear over DTV we get two
equations for ®7(® and &7 respectively,
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Equation (6) defines statistical properties of the back-
ground turbulence. Here and hereafter we suppose these
properties to be given and are interested only in their influ-
ence on large-scale motions. In fact, this corresponds to a
kinematic approximation. Introducing the Fourier transfor-
mation

flkst)= f d?k f(x,t)exp (—ik-x), (8)

(2m)?

where IEEIEL = (k,,k,,0), we rewrite Eqgs. (3) and (7) in the
following form:
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where A g ,,;2:2 (k; X I%)(kf- k3) is the well-known matrix
element of Rossby wave interactions and
wi=— Bk, /(kT +rg?)—ivok}/(kT +rg?) is the Rossby
wave frequency. Note that c} stands for the wave vector of a

large-scale motion while k means the wave vector of small-
scale turbulence. The solution of Eq. (10) may be chosen in
the following form:
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where G(k;t—1t;) is the Green’s function of Eq. (10)
(G)=G(kit=11)]:
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We assume the basic turbulent field ®7()(k;¢) to be ho-
mogeneous and isotropic:

(TR )PTON (k58" )y = 8(k+k")Q(kse—1'), (13)

where Q(k;t—1t") means the correlation function of the basic
field. Substituting expression (11) along with Eq. (5) into the
right-hand side of Eq. (9), averaging it by using Eq. (13), and
neglecting the nonlinear self-action of the regular structure
(this linearization procedure is valid when the condition
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q>( )/ w;<1 is satisfied), we obtain the following equation
for (®(q,1)):
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where G(lz; w) and Q(Iz; w) are Fourier images in time of the
values G(E; 7) and Q(IE; 7) (t=t—1t,), respectively:

S S 1 n .
{G(k;w);0(k;w)}= Ef dm{G(k,7);Q(k;7)}exp(iwT).
(15)

In the case of strong turbulence these values may be ob-
tained from the basic equations (6) and (12) with the aid of
the DIA. Following the papers [22,23], we assume simple
functional forms involving a few coefficients for G and Q
that, in the framework of a kinematic approximation, are
considered as given ones. Namely, we suppose them to be
defined by the following expressions:
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where w(k) defines the spectral energy density, and Q(l;)
is the eddy-turnover frequency defining the time of turbu-
lent spectra formation (in the weak turbulence theory it
is usually considered as a small correction to the linear
kernel defined by wy). Let us assume that a well-developed
inertial range does exist. Then, according to the Kolmogorov

hypothesis, the value (k) should be defined [23] by the
expression Q(k)=ae'?|k|*® (a is some numerical factor
and & is a turbulent energy dissipation rate). Here \ is a
number, A~ 1. It would be equal to 1 exactly if the value

G(;;t—tl) was defined by the following equation for the
Green’s function of Eq. (6):
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instead of Eq. (12).

Substituting Eqgs. (16) and (17) into Eq. (14), and per-
forming the Fourier transformation in time, we obtain the
following dispersion equation for Rossby waves in the case
considered:
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In obtaining Eq. (19), we employed no assumption about
the characteristic scale of the regular structure change. Now
we suppose that this scale greatly exceeds that of the turbu-
lent pulsations, i.e., the inequality |q|<k, is assumed to be
satisfied, where k. is the minimum value of wave numbers
characterizing the energy-containing small-scale turbulent
motion, which is related to the largest size ! of turbulent
energy-containing eddies as k.=2/l. We seek the solution
of Eq. (19) in the form w=w;+Aw;+tiyy (Ww<o;,

w— w j — wj, +iINQ(k) +iQ(G—k) ki+rg? ) [w—w; i — i, +iINQ(k,) +iQ(G— k) (K3 +rg?)

q

(19)

Awi;<w;). In this paper we also suppose that (qrr)?*<1
and yy<<Q(k.) (i.e. the characteristic time of regular struc-
ture growth is supposed to greatly exceed the characteristic
time of turbulent spectra formation). The opposite case of
weak turbulence, when the condition 5> (k,) is satisfied,
was considered in paper [17] [note that in that case Eq. (19)
reduces to Eq. (78) of paper [17] by neglecting terms
ocqz/k%]. In the case considered here Eq. (19) can be rewrit-
ten in the following form:
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where the group velocity is defined as z;g,;IZdw,;l /dlgl,
w=w(k,), h=h(k,), and
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is the spectral enstrophy density. Supposing that value

Q,(k) is defined by its inertial-range form and performing
the integration in the right-hand side of Eq. (20) over the

angle variable &, where the vector k, is defined as
ky1=k,cos(d), k, =k;sin(5), we obtain the following ex-
pressions for the nonlinear frequency shift and nonlinear
growth rate of a regular Rossby structure in the case we
consider here:
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We chose the low limit of an integral in the right-hand
side of Egs. (22)—(25) in the form of “k.” instead of “0” in
order to be consistent with the assumption that the turbulence
is small scale. The “self-organization instability”’ resulting in
the turbulent energy cascade to the regular structures may
obviously occur in the case when y;>0. According to Egs.
(23)—(25), the most unstable regular mode has the wave
number ¢.=(27;/37,)"?. In order to be self-consistent
with the previous study it must satisfy the inequality
G max<k. . The self-organization instability cannot take place
in the case when kfnaxr%< 1, where kg, is the maximum
value of the turbulent motion wave number (in this case the
value v, is negative). It may not also be predicted in the
opposite case krz>1[when the second term in the right-
hand side of Eq. (24) may be neglected] because, despite the
fact that in this case y;>0, the characteristic length scale of
the most unstable mode turns out to be comparable to that of

the turbulence. The latter is not consistent with the scale
separation procedure used in this paper. The self-
organization instability of the large-scale Rossby structures
due to their interaction with strong Rossby-wave turbulence
may be anticipated for some intermediate situation when
k.rg~1, and both terms in the right-hand side of Eq. (24) are
of the same order. This process may be stipulated by the fact
that the regular structures enhance the inhomogeneity of the
turbulence (that was initially homogeneous); meanwhile the
inhomogeneous part of the turbulence affects the regular
structures. In other words, we have feedback [17]. It would
of course be fine to have a physical explanation for the pos-
sibility of such a process for some regimes of 2D turbulence
and impossibility for others.

An analysis shows that our assumption of yy<<Q(k.) is
justified as long as we have small-scale turbulence, i.c.,
q>/k*<1. In order to be consistent with the previous as-
sumption |®TD|<|DTO)|,  the inequality (k(D))/
[LQ(k.)]<<1 should be satisfied, where L is the character-
istic scale of a regular Rossby structure. This condition may
be violated when a regular structure contains sheared back-
ground flows, which may significantly affect the stability is-
sue [24], so this case needs special consideration, which will
be carried out in the near future.

To illustrate the results obtained, we consider the problem
of spontaneous amplification and sustainment of large vorti-
ces like the Great Red Spot in the turbulent Jovian atmo-
spheres. According to observation data [10—12], the Jovian
atmospheric motions that may be considered as small-scale
Rossby waves forming a turbulent spectrum have length
scales in the range ~ 10°—~10* km, while the Rossby radius is
rr~3% 10> km. To evaluate a characteristic length scale of a
large-scale structure that may be generated in such a system,
we have to calculate the integrals in Egs. (24) and (25). We
note that the observed spectra of Rossby and drift-wave tur-
bulence (in the Hasegawa-Mima model) vary as w(k)
o 1/k® for krr~1 [25,26]. Such a distribution can be under-
stood as the broadest spectrum consistent with a logarithmi-
cally convergent value for the enstrophy as k,,, tends to
infinity. In this case, simple calculations give the following
length of the regular structure: L =2 7/q .~ 3.96X 10* km.
This result is in good correspondence with the observed
characteristic scale of the Great Red Spot of Jupiter:
L~2.5%10* km.

In this paper we have considered the stability of a large-
scale regular Rossby structure interacting with strong small-
scale Rossby-wave turbulence. Starting from the Charney-
Hasegawa-Mima equation, we studied the problem of
whether a coherent regular structure could grow in such a
system. We separated the stream function into regular and
turbulent components. Equation (14), together with expres-
sions (16) and (17), were derived representing a consistent
model describing the influence of small-scale turbulence on
regular structure dynamics. As a result of this model, we
were able to detect the self-organization instability, i.e., the
growth of the regular Rossby structures due to turbulent fluc-
tuations, and to study its linear stage. The nonlinear stage of
Rossby-wave interactions with turbulence including the very
formation of nonlinear structures is now being considered for
different types of structures, both analytically and numeri-
cally, and will be presented in the near future.
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